Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Diabetes Care ; 46(6): 1261-1264, 2023 06 01.
Article in English | MEDLINE | ID: covidwho-2301005

ABSTRACT

OBJECTIVE: It has been hypothesized that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children can increase risk of developing type 1 diabetes. RESEARCH DESIGN AND METHODS: We undertook a prospective, register-based analysis of children in Denmark by investigating the association between SARS-CoV-2 infection and subsequent risk of type 1 diabetes. During the pandemic, Denmark had one of the highest test rates per capita in the world, and 90% of all Danish children were tested. RESULTS: Compared with children with a history of only negative SARS-CoV-2 tests, we did not observe a higher risk of first-time diagnosis of type 1 diabetes in children 30 days or more after a positive SARS-CoV-2 test (hazard ratio 0.85; 95% CI 0.70-1.04). CONCLUSIONS: Our data do not support that SARS-CoV-2 infection is associated with type 1 diabetes or that type 1 diabetes should be a special focus after a SARS-CoV-2 infection in children.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 1 , Child , Humans , Prospective Studies , SARS-CoV-2 , Denmark
2.
PLoS Med ; 19(11): e1004037, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2140363

ABSTRACT

BACKGROUND: Individuals with a prior Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection have a moderate to high degree of protection against reinfection, though seemingly less so when the Omicron variant of SARS-CoV-2 started to circulate. The aim of this study was to evaluate the vaccine effectiveness (VE) against SARS-CoV-2 reinfection, Coronavirus Disease 2019 (COVID-19)-related hospitalization, and COVID-19-related death, in individuals with prior SARS-CoV-2 infection, and to assess the effect of time since vaccination during periods with different dominant SARS-CoV-2 variants. METHODS AND FINDINGS: This study used a nationwide cohort design including all individuals with a confirmed SARS-CoV-2 infection, who were alive, and residing in Denmark between 1 January 2020 and 31 January 2022. Using Danish nationwide registries, we obtained information on SARS-CoV-2 infections, COVID-19 vaccination, age, sex, comorbidity, staying at hospital, and country of origin. The study population included were individuals with prior SARS-CoV-2 infection. Estimates of VE against SARS-CoV-2 reinfection with 95% confidence intervals (CIs) were calculated using a Poisson regression model and adjusted for age, sex, country of origin, comorbidity, staying at hospital, calendar time, and test incidence using a Cox regression model. The VE estimates were calculated separately for three periods with different dominant SARS-CoV-2 variants (Alpha (B.1.1.7), Delta (B.1.617.2), or Omicron (B.1.1.529)) and by time since vaccination using unvaccinated as the reference. In total, 148,527 person-years and 44,192 SARS-CoV-2 infections were included for the analysis regarding reinfections. The study population comprised of 209,814 individuals infected before or during the Alpha period, 292,978 before or during the Delta period, and 245,530 before or during the Omicron period. Of these, 40,281 individuals had completed their primary vaccination series during the Alpha period (19.2%), 190,026 during the Delta period (64.9%), and 158,563 during the Omicron period (64.6%). VE against reinfection following any COVID-19 vaccine type administered in Denmark, peaked at 71% (95% CI: -Inf to 100%) at 104 days or more after vaccination during the Alpha period, 94% (95% CI: 92% to 96%) 14 to 43 days after vaccination during the Delta period, and 60% (95% CI: 58% to 62%) 14 to 43 days after vaccination during the Omicron period. Waning immunity following vaccination was observed and was most pronounced during the Omicron period. Due to too few events, it was not possible to estimate VE for hospitalization and death. Study limitations include potentially undetected reinfections, differences in health-seeking behavior, or risk behavior between the compared groups. CONCLUSIONS: This study shows that in previously infected individuals, completing a primary vaccination series was associated with a significant protection against SARS-CoV-2 reinfection compared with no vaccination. Even though vaccination seems to protect to a lesser degree against reinfection with the Omicron variant, these findings are of public health relevance as they show that previously infected individuals still benefit from COVID-19 vaccination in all three variant periods.


Subject(s)
COVID-19 , Viral Vaccines , Humans , SARS-CoV-2 , Reinfection/epidemiology , Reinfection/prevention & control , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Vaccine Efficacy , Denmark/epidemiology
3.
JAMA Cardiol ; 7(6): 600-612, 2022 06 01.
Article in English | MEDLINE | ID: covidwho-1801970

ABSTRACT

Importance: Reports of myocarditis after SARS-CoV-2 messenger RNA (mRNA) vaccination have emerged. Objective: To evaluate the risks of myocarditis and pericarditis following SARS-CoV-2 vaccination by vaccine product, vaccination dose number, sex, and age. Design, Setting, and Participants: Four cohort studies were conducted according to a common protocol, and the results were combined using meta-analysis. Participants were 23 122 522 residents aged 12 years or older. They were followed up from December 27, 2020, until incident myocarditis or pericarditis, censoring, or study end (October 5, 2021). Data on SARS-CoV-2 vaccinations, hospital diagnoses of myocarditis or pericarditis, and covariates for the participants were obtained from linked nationwide health registers in Denmark, Finland, Norway, and Sweden. Exposures: The 28-day risk periods after administration date of the first and second doses of a SARS-CoV-2 vaccine, including BNT162b2, mRNA-1273, and AZD1222 or combinations thereof. A homologous schedule was defined as receiving the same vaccine type for doses 1 and 2. Main Outcomes and Measures: Incident outcome events were defined as the date of first inpatient hospital admission based on primary or secondary discharge diagnosis for myocarditis or pericarditis from December 27, 2020, onward. Secondary outcome was myocarditis or pericarditis combined from either inpatient or outpatient hospital care. Poisson regression yielded adjusted incidence rate ratios (IRRs) and excess rates with 95% CIs, comparing rates of myocarditis or pericarditis in the 28-day period following vaccination with rates among unvaccinated individuals. Results: Among 23 122 522 Nordic residents (81% vaccinated by study end; 50.2% female), 1077 incident myocarditis events and 1149 incident pericarditis events were identified. Within the 28-day period, for males and females 12 years or older combined who received a homologous schedule, the second dose was associated with higher risk of myocarditis, with adjusted IRRs of 1.75 (95% CI, 1.43-2.14) for BNT162b2 and 6.57 (95% CI, 4.64-9.28) for mRNA-1273. Among males 16 to 24 years of age, adjusted IRRs were 5.31 (95% CI, 3.68-7.68) for a second dose of BNT162b2 and 13.83 (95% CI, 8.08-23.68) for a second dose of mRNA-1273, and numbers of excess events were 5.55 (95% CI, 3.70-7.39) events per 100 000 vaccinees after the second dose of BNT162b2 and 18.39 (9.05-27.72) events per 100 000 vaccinees after the second dose of mRNA-1273. Estimates for pericarditis were similar. Conclusions and Relevance: Results of this large cohort study indicated that both first and second doses of mRNA vaccines were associated with increased risk of myocarditis and pericarditis. For individuals receiving 2 doses of the same vaccine, risk of myocarditis was highest among young males (aged 16-24 years) after the second dose. These findings are compatible with between 4 and 7 excess events in 28 days per 100 000 vaccinees after BNT162b2, and between 9 and 28 excess events per 100 000 vaccinees after mRNA-1273. This risk should be balanced against the benefits of protecting against severe COVID-19 disease.


Subject(s)
COVID-19 , Myocarditis , Pericarditis , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , ChAdOx1 nCoV-19 , Cohort Studies , Female , Humans , Male , Myocarditis/diagnosis , Myocarditis/epidemiology , Myocarditis/etiology , Pericarditis/diagnosis , SARS-CoV-2 , Vaccination/adverse effects
4.
Lancet Infect Dis ; 22(7): 967-976, 2022 07.
Article in English | MEDLINE | ID: covidwho-1799640

ABSTRACT

BACKGROUND: Estimates of the severity of the SARS-CoV-2 omicron variant (B.1.1.529) are crucial to assess the public health impact associated with its rapid global dissemination. We estimated the risk of SARS-CoV-2-related hospitalisations after infection with omicron compared with the delta variant (B.1.617.2) in Denmark, a country with high mRNA vaccination coverage and extensive free-of-charge PCR testing capacity. METHODS: In this observational cohort study, we included all RT-PCR-confirmed cases of SARS-CoV-2 infection in Denmark, with samples taken between Nov 21 (date of first omicron-positive sample) and Dec 19, 2021. Individuals were identified in the national COVID-19 surveillance system database, which included results of a variant-specific RT-PCR that detected omicron cases, and data on SARS-CoV-2-related hospitalisations (primary outcome of the study). We calculated the risk ratio (RR) of hospitalisation after infection with omicron compared with delta, overall and stratified by vaccination status, in a Poisson regression model with robust SEs, adjusted a priori for reinfection status, sex, age, region, comorbidities, and time period. FINDINGS: Between Nov 21 and Dec 19, 2021, among the 188 980 individuals with SARS-CoV-2 infection, 38 669 (20·5%) had the omicron variant. SARS-CoV-2-related hospitalisations and omicron cases increased during the study period. Overall, 124 313 (65·8%) of 188 980 individuals were vaccinated, and vaccination was associated with a lower risk of hospitalisation (adjusted RR 0·24, 95% CI 0·22-0·26) compared with cases with no doses or only one dose of vaccine. Compared with delta infection, omicron infection was associated with an adjusted RR of hospitalisation of 0·64 (95% CI 0·56-0·75; 222 [0·6%] of 38 669 omicron cases admitted to hospital vs 2213 [1·5%] of 150 311 delta cases). For a similar comparison by vaccination status, the RR of hospitalisation was 0·57 (0·44-0·75) among cases with no or only one dose of vaccine, 0·71 (0·60-0·86) among those who received two doses, and 0·50 (0·32-0·76) among those who received three doses. INTERPRETATION: We found a significantly lower risk of hospitalisation with omicron infection compared with delta infection among both vaccinated and unvaccinated individuals, suggesting an inherent reduced severity of omicron. Our results could guide modelling of the effect of the ongoing global omicron wave and thus health-care system preparedness. FUNDING: None.


Subject(s)
COVID-19 , Hepatitis D , COVID-19/epidemiology , Cohort Studies , Denmark/epidemiology , Hospitalization , Humans , SARS-CoV-2/genetics
5.
Euro Surveill ; 27(10)2022 03.
Article in English | MEDLINE | ID: covidwho-1742167

ABSTRACT

Following emergence of the SARS-CoV-2 variant Omicron in November 2021, the dominant BA.1 sub-lineage was replaced by the BA.2 sub-lineage in Denmark. We analysed the first 2,623 BA.2 cases from 29 November 2021 to 2 January 2022. No epidemiological or clinical differences were found between individuals infected with BA.1 versus BA.2. Phylogenetic analyses showed a geographic east-to-west transmission of BA.2 from the Capital Region with clusters expanding after the Christmas holidays. Mutational analysis shows distinct differences between BA.1 and BA.2.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Denmark/epidemiology , Humans , Molecular Epidemiology , Phylogeny , SARS-CoV-2/genetics
6.
Ann Intern Med ; 175(4): 541-546, 2022 04.
Article in English | MEDLINE | ID: covidwho-1662825

ABSTRACT

BACKGROUND: In March 2021, several European countries suspended the use of the AZD1222 (Oxford-AstraZeneca) COVID-19 vaccine because of thromboembolic safety concerns. Reports from Norway and Germany subsequently described patients with venous thrombosis and thrombocytopenia within 5 to 16 days of vaccination. OBJECTIVE: To evaluate the risk for outcomes related to thrombosis and thrombocytopenia after AZD1222 or BNT162b2 (Pfizer-BioNTech) COVID-19 vaccination. DESIGN: Nationwide exploratory retrospective cohort study. SETTING: Danish linkable registers on vaccinations, hospitalizations, occupation, and other covariates. PARTICIPANTS: 355 209 Danish frontline personnel designated for priority COVID-19 vaccination followed from 27 December 2020 (the day of the first COVID-19 vaccination in Denmark) to 13 April 2021. MEASUREMENTS: Study outcomes were cerebral venous sinus thrombosis, splanchnic vein thrombosis, pulmonary embolism, deep venous thrombosis, arterial thrombosis, thrombocytopenia, and death. Cumulative incidences of study outcomes within 28 days of vaccination and unvaccinated risk time were compared using adjusted survival curves resulting in risk differences (RDs) at day 28 after vaccination. Adjustment for birth cohort, sex, calendar period, occupation, comorbid conditions, and prescription drug use was included. RESULTS: Vaccination with AZD1222 versus no vaccination was associated with a significant RD at day 28 for deep venous thrombosis (RD, 8.35 [95% CI, 0.21 to 16.49] per 100 000 vaccinations). The RDs for cerebral venous sinus thrombosis (RD, 1.68 [CI, -0.64 to 4.00] per 100 000 vaccinations) and thrombocytopenia (RD, 2.39 [CI, -1.09 to 5.87] per 100 000 vaccinations) were not significant. No adverse associations were seen for BNT162b2 vaccination. LIMITATION: No medical record review; surveillance bias. CONCLUSION: In this exploratory retrospective cohort study among frontline personnel in Denmark, receipt of the AZD1222 vaccine was associated with a small excess risk for deep venous thrombosis. Although the corresponding risks for the more rare and severe thrombotic outcomes (such as cerebral venous sinus thrombosis) were not statistically significantly increased, statistical precision was low, and clinically relevant risks could not be excluded with certainty. There was no statistically significant association of BNT162b2 vaccination with thrombotic or thrombocytopenic events. PRIMARY FUNDING SOURCE: Lundbeck Foundation.


Subject(s)
COVID-19 , Sinus Thrombosis, Intracranial , Thrombocytopenia , Thromboembolism , Thrombosis , Venous Thrombosis , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , ChAdOx1 nCoV-19 , Humans , Occupations , Retrospective Studies , SARS-CoV-2 , Sinus Thrombosis, Intracranial/complications , Thrombocytopenia/chemically induced , Thrombocytopenia/epidemiology , Thromboembolism/epidemiology , Thromboembolism/etiology , Thrombosis/etiology , Vaccination/adverse effects , Venous Thrombosis/complications
7.
BMJ ; 375: e068665, 2021 12 16.
Article in English | MEDLINE | ID: covidwho-1583188

ABSTRACT

OBJECTIVE: To investigate the association between SARS-CoV-2 vaccination and myocarditis or myopericarditis. DESIGN: Population based cohort study. SETTING: Denmark. PARTICIPANTS: 4 931 775 individuals aged 12 years or older, followed from 1 October 2020 to 5 October 2021. MAIN OUTCOME MEASURES: The primary outcome, myocarditis or myopericarditis, was defined as a combination of a hospital diagnosis of myocarditis or pericarditis, increased troponin levels, and a hospital stay lasting more than 24 hours. Follow-up time before vaccination was compared with follow-up time 0-28 days from the day of vaccination for both first and second doses, using Cox proportional hazards regression with age as an underlying timescale to estimate hazard ratios adjusted for sex, comorbidities, and other potential confounders. RESULTS: During follow-up, 269 participants developed myocarditis or myopericarditis, of whom 108 (40%) were 12-39 years old and 196 (73%) were male. Of 3 482 295 individuals vaccinated with BNT162b2 (Pfizer-BioNTech), 48 developed myocarditis or myopericarditis within 28 days from the vaccination date compared with unvaccinated individuals (adjusted hazard ratio 1.34 (95% confidence interval 0.90 to 2.00); absolute rate 1.4 per 100 000 vaccinated individuals within 28 days of vaccination (95% confidence interval 1.0 to 1.8)). Adjusted hazard ratios among female participants only and male participants only were 3.73 (1.82 to 7.65) and 0.82 (0.50 to 1.34), respectively, with corresponding absolute rates of 1.3 (0.8 to 1.9) and 1.5 (1.0 to 2.2) per 100 000 vaccinated individuals within 28 days of vaccination, respectively. The adjusted hazard ratio among 12-39 year olds was 1.48 (0.74 to 2.98) and the absolute rate was 1.6 (1.0 to 2.6) per 100 000 vaccinated individuals within 28 days of vaccination. Among 498 814 individuals vaccinated with mRNA-1273 (Moderna), 21 developed myocarditis or myopericarditis within 28 days from vaccination date (adjusted hazard ratio 3.92 (2.30 to 6.68); absolute rate 4.2 per 100 000 vaccinated individuals within 28 days of vaccination (2.6 to 6.4)). Adjusted hazard ratios among women only and men only were 6.33 (2.11 to 18.96) and 3.22 (1.75 to 5.93), respectively, with corresponding absolute rates of 2.0 (0.7 to 4.8) and 6.3 (3.6 to 10.2) per 100 000 vaccinated individuals within 28 days of vaccination, respectively. The adjusted hazard ratio among 12-39 year olds was 5.24 (2.47 to 11.12) and the absolute rate was 5.7 (3.3 to 9.3) per 100 000 vaccinated individuals within 28 days of vaccination. CONCLUSIONS: Vaccination with mRNA-1273 was associated with a significantly increased risk of myocarditis or myopericarditis in the Danish population, primarily driven by an increased risk among individuals aged 12-39 years, while BNT162b2 vaccination was only associated with a significantly increased risk among women. However, the absolute rate of myocarditis or myopericarditis after SARS-CoV-2 mRNA vaccination was low, even in younger age groups. The benefits of SARS-CoV-2 mRNA vaccination should be taken into account when interpreting these findings. Larger multinational studies are needed to further investigate the risks of myocarditis or myopericarditis after vaccination within smaller subgroups.


Subject(s)
COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , Myocarditis/etiology , Pericarditis/etiology , Vaccination/adverse effects , 2019-nCoV Vaccine mRNA-1273/adverse effects , Adolescent , Adult , Aged , BNT162 Vaccine/adverse effects , COVID-19 Vaccines/administration & dosage , Child , Cohort Studies , Denmark/epidemiology , Female , Humans , Length of Stay/statistics & numerical data , Male , Middle Aged , Myocarditis/epidemiology , Pericarditis/epidemiology , SARS-CoV-2 , Troponin/blood , Young Adult
8.
Lancet Infect Dis ; 21(11): 1507-1517, 2021 11.
Article in English | MEDLINE | ID: covidwho-1492844

ABSTRACT

BACKGROUND: The more infectious SARS-CoV-2 lineage B.1.1.7 rapidly spread in Europe after December, 2020, and a concern that B.1.1.7 could cause more severe disease has been raised. Taking advantage of Denmark's high RT-PCR testing and whole genome sequencing capacities, we used national health register data to assess the risk of COVID-19 hospitalisation in individuals infected with B.1.1.7 compared with those with other SARS-CoV-2 lineages. METHODS: We did an observational cohort study of all SARS-CoV-2-positive cases confirmed by RT-PCR in Denmark, sampled between Jan 1 and March 24, 2021, with 14 days of follow-up for COVID-19 hospitalisation. Cases were identified in the national COVID-19 surveillance system database, which includes data from the Danish Microbiology Database (RT-PCR test results), the Danish COVID-19 Genome Consortium, the National Patient Registry, the Civil Registration System, as well as other nationwide registers. Among all cases, COVID-19 hospitalisation was defined as first admission lasting longer than 12 h within 14 days of a sample with a positive RT-PCR result. The study population and main analysis were restricted to the proportion of cases with viral genome data. We calculated the risk ratio (RR) of admission according to infection with B.1.1.7 versus other co-existing lineages with a Poisson regression model with robust SEs, adjusted a priori for sex, age, calendar time, region, and comorbidities. The contribution of each covariate to confounding of the crude RR was evaluated afterwards by a stepwise forward inclusion. FINDINGS: Between Jan 1 and March 24, 2021, 50 958 individuals with a positive SARS-CoV-2 test and at least 14 days of follow-up for hospitalisation were identified; 30 572 (60·0%) had genome data, of whom 10 544 (34·5%) were infected with B.1.1.7. 1944 (6·4%) individuals had a COVID-19 hospitalisation and of these, 571 (29·4%) had a B.1.1.7 infection and 1373 (70·6%) had an infection with other SARS-CoV-2 lineages. Although the overall number of hospitalisations decreased during the study period, the proportion of individuals infected with B.1.1.7 increased from 3·5% to 92·1% per week. B.1.1.7 was associated with a crude RR of hospital admission of 0·79 (95% CI 0·72-0·87; p<0·0001) and an adjusted RR of 1·42 (95% CI 1·25-1·60; p<0·0001). The adjusted RR was increased in all strata of age and calendar period-the two covariates with the largest contribution to confounding of the crude RR. INTERPRETATION: Infection with SARS-CoV-2 lineage B.1.1.7 was associated with an increased risk of hospitalisation compared with that of other lineages in an analysis adjusted for covariates. The overall effect on hospitalisations in Denmark was lessened due to a strict lockdown, but our findings could support hospital preparedness and modelling of the projected impact of the epidemic in countries with uncontrolled spread of B.1.1.7. FUNDING: None.


Subject(s)
COVID-19/epidemiology , Hospitalization/statistics & numerical data , SARS-CoV-2/isolation & purification , Adolescent , Adult , COVID-19/diagnosis , COVID-19/therapy , COVID-19/transmission , COVID-19 Nucleic Acid Testing/statistics & numerical data , Child , Child, Preschool , Cohort Studies , Comorbidity , Denmark/epidemiology , Female , Genome, Viral/genetics , Humans , Infant , Infant, Newborn , Male , Middle Aged , RNA, Viral/genetics , RNA, Viral/isolation & purification , Risk Assessment/statistics & numerical data , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Whole Genome Sequencing/statistics & numerical data , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL